Algebraic Geometry Lecture 26 — Complex Multiplication of Elliptic Curves
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81 EvrLipTic CURVES OVER C

Let E be an elliptic curve over C. So E is isomorphic to C/A, where A is a lattice in C, via the
isomorphism

$:C/A— E: 2 (p(2),0'(2))
where p is the Weierstrafl p-function:
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In fact we have a bijection
{lattices up to homothety} «— {elliptic curves over C up to isomorphism}.

Two lattices Ay, Ao are homothetic if there exists k € C* such that A; = kAs. In particular every
lattice is homothetic to one of the form A, where A, = Z7 + Z with 7 € H.

We are going to study the endomorphism ring End(F) of E. Now, Z — End(E) because for
each n € Z the map P +— nP is an endomorphism.

Example. E : y? = 42> — 4z over C. The corresponding lattice is A = Zw + Ziw for some w € R.
This has extra symmetry, e.g. rotation 7/2 clockwise. This can be expressed as A = iA. We can
see that

And ¢/(iz) = ip/(2). So on E we consider i to be the endomorphism i(x,y) = (—x, iy). Note that
#(z,y) = i(~a,iy)
= (z,—y)
= (=1)(z,y).
So i € End(E) and hence Z[i] C End(E).

When End(FE) is strictly larger than Z then we say F has complex multiplication (CM). Most
elliptic curves over C do not have CM.

Theorem. Let E be an elliptic curve over C corresponding to the lattice A. Then

End(E) = {3 €C : A C A}.



This theorem places quite severe restrictions on what End(FE) can be. We'll prove that either
End(E) =Z or End(F) is an order in an imaginary quadratic field (IQF).

Recap. Let d > 0 be square-free, then K = Q(v/—d) is an imaginary quadratic field. Its ring of
integers Ok is K N O, where O is the set of all algebraic integers in C. We have

O — Z[v—d] ifd=1,2 (mod 4)
K7 z[(1+v=d)/2] ifd=3 (mod 4).

An order in K is a subring R of Ok with Z C R C Og. R has the form R = Z 4+ Zf§ where
d=+—dor (1++v—d)/2 and f € Z is called the conductor, it is the index of R in Ok.

The discriminant of R is

Do —f?d ifd=3 (mod4)
R=\ —4f2d ifd=1,2 (mod 4).

Theorem. Let E be an elliptic curve over C. Then End(E) is isomorphic to either Z or an order
i an IQF.

Proof. Let A = Zwy + Zwo be the associated lattice to E. Let
R={p8eC: BACA} =Eund(E).
R is a ring.
Suppose 3 € R, then there exist j, k, m,n € Z such that
Pwr = jwi + kw2

Bwsy = mw1 + nws.

So
ﬁ —j —k w1 o 0
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and so
(B—=3)(B—n)—km=0
whence

B%—(j+n)B—km=0.
So 3 is an algebraic integer in a quadratic field. If 5 € R then the linear independence of wy, ws,
and
(B—Jj)wi — kwa =0

implies § = j € Z. So RNR = Z. Suppose R # Z, and let § € R\ Z, so in particular 5 ¢ R hence
(3 is an algebraic integer in an IQF, say K = Q(v/—d). Suppose 8’ is another non-real element of
R. Then 3’ € K' = Q(v/—d'). But 8+ ' must lie in an IQF, whence K = K’. So R C K and all
elements are algebraic integers. So R C Ok and R is a ring, hence an order in an IQF. O

§2 ELLIPTIC CURVES OVER F,

Let E be an elliptic curve over F,. An elliptic curve over a finite field always has CM. This
is easily seen in most cases, because the Frobenius endomorphism ¢ : E — E : (z,y) — (29,y9)
usually is not “in” Z. ¢ satisfies the quadratic equation

X2 —aX+q=0
where |a| < 2,/g. When a < 2,/q the equation only has non-real solutions, so ¢ ¢ Z.



Theorem. Let E be an elliptic curve over a finite field of characteristic p.

(1) If E is ordinary (i.e. card(E[p]) = p) then End(E) is an order in an IQF.
(2) If E is supersingular (i.e. card(E[p]) = 1) then End(F) is a mazximal order in a definite
quaternion algebra that is ramified at p and oo and splits at the other primes.



